
Application of an Incremental Evolution Technique to Spacecraft Design

Optimization

Alex S. Fukunaga

Jet Propulsion Laboratory, MS 525-3660

California Institute of Technology

4800 Oak Grove Drive

Pasadena, CA91109-8O99
alex.fukunaga@jpl .nasa.gov

Abstract

13asccl on the intuition that it is often easier to learn
to solve difficult problems after similar, simpler prob-
lems have been learned, incremental evolution is a re-
cently proposed extension to evolutionary algorithms in
which the evaluation function against which a popula-
tion is evolved is scaled over time. This paper presents
an application of incremental evolution to the problem of
physical design optimization of a Mars microprobe space-
craft. Experimental results that demonstrated the utility
of the approach arc presented, as well as some new in-
sights into the behavior of incremental evolution which
may explain its success.

1 Introduction

Evolutionary optimization algorithms such as genetic al-
gorithms [4] arc an approach to optimization that uses
biologically -inspire dselection, recombination andmuta-
tion operators to evolve a population of candidate solu-
tions to a problem, in a process analogous to biological
evolution, Much of the work on evolutionary optinliza-
tion has focused on investigation of the mechanics of the
search algorithm, i.e., the mechanisms by which the space
of solutions is explored.

A complementary approach is to focus on the search-
ability of the solution space that is explored (that is, by
the fitness function over the space of possible solutions).
Incremental evolution [6, 3] is an extension to evolution-
ary optimization which decreases the computational ef-
fort of cwolving the solution to a difficult problem by first
evolving solutions to “easier” problems.

The intuition behind this approach is attractive:

● It is often easier to learn difficult tasks after simpler
tasks have been learned; and

● It may therefore be advantageous to use an ‘ieasier”
fitness function when evolving solutions to complex
problems.

This intuition is consistent with the phenomenon of scaf-
folcling, which has been studied in psychology [12].

Previous approaches that are related to incremental
evolution include work in optimization in a dynamic en-
vironment ([11, 2, 10]), multi-phasic fitness environments
([1]), convolution ([7]), and methods for test case selec-
tion for evolutionary algorithms [9, 13]. See [3] for a full
cliscussion on the relationship between incremental evo-
lution and these other approaches. Previous works that
have discussed the application of incremental evolution
techniques are [5, 6, 3].

This paper presents the application of incremental evo-
lution to a real-world, spacecraft design optimization
problem – the physical design optimization of a Mars
soil penetrator microprobe. Based on the experimental
results in this clomaiu, new insights into the increnlen-
tal evolution mechanism are presented. The rest of the
paper is organized as follows: In Scct,ion 2, wc review

the incremental evolution technique. In Section 3, we
describe the Mars microprobe design problem. Section
4 presents experimental results in the Mars microprobe
domain, demonstrating that incremental evolution can
yield significant performance improvements over conven-
tional optimization, and an analysis of the results to bet-
ter understand why incremental evolution is successful.
Section 5 concludes the paper with a discussion and di-
rect ions for future work.

2 Incremental Evolution ,

The essential idea of incremental evolution is to scale the
evaluation function (i.e., the “fitness function” against

1

which, say, a candidate solution is evolved) over time,
with the aim of minimizing the overall time spent evolv-
ing a controller that achieves the prescribed task. Sup-
pose that our goal is to generate, within a prescribed
time limit T, a program to optimize some evaluation
function G. The problem of incremental evolution is
to derive a set of intermediate evaluation functions
~ = (GO, G1, ..., G~-l = G) and a schedule S =
(t(l,t],...,t~-1),SUChthat tO + tl + . . . + t~-1 = T.
The population of controllers is sequentially evolved us-
ing evaluation function Gk for time tA,,beginning with
Go for time to.

Let I-(g, S, Q) be the total processing effort (e.g., CPU
time) required to evolve a solution of quality Q for the
task G, given the sequence of tasks g and the schedule
S. Given any final evaluation function G and a desired
solution quality Q, we wish to be able to choose (~, S)
so that ~(~, S, Q) is minimized. This is a non-trivial,
met a-level optimization, and a methodology for comput-
ing optimal (~, S) sequences for arbitrary G is unlikely.
Indeed, certain choices of (~, S) may result in a per-
formance degradation when compared with the trivial
schedule that uses ~’ = (G) and S’ = (t. = T), that is
to say, ~(~,S, Q) > ~(~’,S’, Q).

In this paper, we restrict our attention to two-stage
incremental evoktion, where there is only one interme-
diate task (i.e., evaluation function) and only one tran-
sition between evaluation functions. In other words, we
use k = 1, ~ = (GO, G1), and S = (to, tl = (T–to)); it is

understood that G] is the final, or “target”, evaluation
function G.

Figure 1 shows a general schema for the two-stage in-
cremental evolution, where initialize, evaluate, recom-

bine, mutate, and select are domain-specific operators.
Note that there is a transition between the two fitness
functions Go and I at generation to. evaluate computes
the fitness values of the members of a population P(t)
with respect to fitness function F (which, in the case
of two-stage incremental evolution, is either Go
depending on t.

3 The Mars Soil Penetrator
croprobe

or G1,

Mi-

As part of the NASA New Millennium program, two mi-
croprobe, each consisting of a very low-mass aeroshell
and pcnetrator system, are planned to launch in Jan-
uary, 1999 (attached to the Mars Surveyor lander), to
arrive at Mars in December, 1999. The 3kg probes will
ballistically enter the Martian atmosphere and passively
orient themselves to meet peak heating and impact re-
quirements. Upon impacting the Martian surface, the

t:=o
F=Go
initizdize(~(t))
evaluate(P(t), F)
while not terminate do

Ift=tr)+l
F=G’J

P’(t) := recombinc(l’(f))
P“(t) := mutate(~’(t))
cvaluatc(P(t), F)
P(t + 1) := select (P’’(t) u Q)
t:=t+l

cnd while

Figure 1: Algorithm schema for an incremental evolu-
tionary algorithm. P is a population of candidate so-
lutions; Q is a special set of individuals that has to be
considered for selection, e.g., Q = P(t). F is an evalua-
tion function.

probes will punch through the entry aeroshell and sepa-
rate into a fore- and aftbody system. The forebody will
reach a depth of 0.5 to 2 meters, while the aftbody will
remain on the surface for collllllllllicatiolls.

Each penetrator system includes a suite of highly
miniaturized components needed for future micropene-
trator networks: ultra low temperature batteries, power
microelectronics, and advanced microcontroller, a mi-
crotelecommunications system and a science payload
package (a microlaser systcm for detecting subsurface
water).

We applied incremental evolution to optimize the
physical design parametcm for the Mars microprobe.
The microprobe optimization domain in its entirety is
very complex, involving a three-stage simulation: stage
1- separation analysis (i.e., separation from the, Mars
Surveyor), stage .2- acrodynamical simulation, stage 3-
soil impact and penetration. The complete design model
for the penetrator is currently under development. Be-
low, we describe the optimization of the current model,
which implements the stage 3 (impact/penetration)
problem.

Given a number of parameters dcscribiug the initial
conditions including the angle of attack of the penetra-
tor, the impact velocity, and the hardness of the target
surface, the optimization problem is to select the total
length and outer diameter of the penetrator, where the
objective is to maximize the ratio of the depth of pene-
tration to the length of the penctrator. A fitness value of
zero indicates a complete failure on behalf of the probe
(e.g., a design that WOUIC1bounce off the target surface).

2

.-

A negative fitness value indicates a design that is not
physically rcalizaMe - note that this is not possible to
determine a priori without consulting the simulation.1

4 Experimental Results

To evolve solutions for the Mars microprobe design opti-
mization problem, we used a standard, generational ge-
netic algorithm using one-point crossover and and a bit-
flipping mutation operator [4]. The population size was
50, and each run was 100 generations. The crossover rate
was 0.6, and the mutation rate was 0.01.

4,1 Generating New Evaluation Func-
tions for Incremental Evolution

In order to generate new evaluation functions for incre-
mental evolution (i.e., Go), we consider two of the ini-
tial condition variables: impact velocity, and the hard-
ness of the target surface (measured by a soil number –
the higher the soil mnnber,the softer the surface). Intu-
itively, the higher the impact velocity, the more likely it
is that the probe will penetrate deeper, since the energy
at impact is higher (all else being equal). Likewise, the
softer the target surface, the easier it is to penetrate the
surface.

Thus, for our two-stage increment al evolution experi-
ments, we generate GO as follows: Go is identical to the
“true evaluation function” (G I), except that in the soil
penetration simulation, target soil number is set differ-
ently than for G1 (For G1, soil number = 7). soil number
was varied between 3 (very hard) and 14 (soft).

In all of the experiments below, we set to = 30. That
is, the transition between Go and G1 occurred after the
30th generation.

4.2 Incremental Evolution Results

We say that (G., to) successfully primes for G1 if
~((Go, G1), (to, tI), Q) < ~((Gl), (to + tI), Q), i.e., the
incremental evolution reduces the time required to reach
the prescribed solution quality Q.

Figure 2 shows the performance of incremental evolu-
tion for various Go, where the soil number used to de-
termine Go was varied between 3 and 14 (hereafter, we
say “soil=x” to denote the choice of Go for which the
soil number is x.) The control experiment is soil=7 (i.e.,
Go = G1), which corresponds to the standard genetic al-
gorithm. Each curve shows the mean of 30 independent
runs of incremental evolution. In general, the higher soil

] The decision to distinguish between failures and physically un-
realizable decision by assigning different fitness values is arbitrary.

numbers for Go were correlated with better performance,
that is, Go with higher soil numbers successfully primes
for soil=7. Soil=14 significantly outperformed the con-
trol case (soil= 7), while (soil =3) performed significantly
worse than soil=7

.,.-”’-- “- ‘–
,/’-

/
f

—sOil.3

60il=5

— sOil.7

soil=l 1

++,+.++++4+!+++44++++) ++++11+++++! l++,+l.,++,++,+++,+.+++.,++,++I++++,4++++H I++**l.!+++*

-mcb&*812R=*3 fsti G’4f2RK5ae2rJt
Generetlon

paw1

Figure 2: Performance of incremental evolution using
pr~ning (G.) functions where the soil number was varied
between 3 (hard soil) and 14 (soft soil). The control case
(i.e., Go = G1 is soil= 7). Each curve shows the mean of
30 independent runs.

4,3 Analysis

In order to gain some insights into the results of the
previous section, we analyze the cost surfaces used for
G]. Figure 3-5 show sampled portions of the G1 cost
surfaces used in the experiments above. The sampling
resolution was one point every 0.02 inches for outside
diameter, and 0.04 feet of total penetrator length.

Several observations can be made about the structure
of the cost surfaces. First, in general, the cost surfaces
are quite “rugged”, in that points with positive fitness
are interspersed with points of zero and negative fitness.
This is a significant factor in determining the relative

3

,.
. .

%459s 14,

Figure 3: Sampled cost surface of Go, where soil = 14 Figure 5: Sampled cost surface of Go, where soil = 3

(soft soil). The z-axis represents the fitness value. (very hard soil). The z-axis represents the fitness value.

Figure 4: Sampled cost surface of Go, where soil = 7
(moderately hard soil). The z-axis represents the fitness
value.

difficulty of a cost surface for an evolutionary algorithm.
Second, there is an apparent correlation between the soil
number and the ruggedness of the surface. The cost sur-
faces for Go with higher soil munbcrs are smoother than
the cost surfaces for Go with lower soil numbers. Fi-
nally, it is clear that the overall structure of the surfaces
are quite similar, e.g., the global maxima of the samples
are around (length=O.5 feet, diameter=O.5 inches) in all
cases.

This suggests a possible explanation for the behavior
of incrcmcnt al evolution in this domain. First, choosing
a Go that is smoother than G1 in effect “smooths” the
search space for the evolutionary algorithm, providing
an easier cost surface. Second, if the overall structures

4

of Go and G1 are similar, then finding good solutions in
the space of Go correspond to finding good solutions in
the space of G1. Thus, if Go is chosen appropriately, in-
cremental evolution is like searching a smoothed approx-
imation of G1 that is easier to search than G1; because
the evolutionary algorithm is less likely to get stuck in
local minima in the less bumpy surface of GO, progress
towards a global near-optimum is faster.

[3] noted the need for a theory to related the notion of
the relationship between “problem difficulty” and incre-
mental evolution success. We now have the beginnings
of such a theory, based on cost surface structure. Al-
though the first studies of incremental evolution [3, 5, 6]
were clearly inspired by the intuitive notion of ‘(learn-
ing easier tasks before more difficult tasks”, e.g., it is
“easier” to penetrate the target surface if the target is
softer, the results of this paper and [3] strongly suggest
that such naive notions of “easy” and “hard” problems
arc not sufficient to predict the success of incremental
evolution. To develop a normative theory of incremental
evolution, attention should bc focused not on easy/hard
“problems”, but on the analysis of easy/hard cost sur-
faces for a particular search algorithm.

5 Discussion and Future Work

The major contributions of this paper has been to
demonstrate the utility of incremental evolution for real-
world optimization problems, ancl to offer some new in-
sights that could explain how the mechanism operates.
Although [3] demonstrated statistically significant im-
provements (over standard evolution) when using incre-
mental evolution in two artificial optimization domains

4

(the Tracker [8] foraging domain and a pursuit-evasion
game), the results were somewhat mixed, in that it was
not clear under what circumstances the approach would
be successful.

The results in this paper provide support that incre-
mental evolution is a viable approach in practice for real-
world optimization problems – a genetic algorithm with
incremental evolution was able to find higher-quality so-
lutions in less time than a standard genetic algorithm on
the Mars microprobe design problem.

In addition, this paper has yielded some interesting
insight into how the incremental evolution mechanism
operates. Since the domain is a problem with only two
decision variables (probe length and outer diameter), it
was possible to visualize the cost surfaces of the priming
functions (this was not possible in the higher-dimensional
problems studiecl in [3]). Our analysis suggest two fac-
tors that are important in order for priming (improved
performance) to bc observed in the application of incre-
ment al evolution:

●

●

The structure of the priming and target evaluation
functions should be similar (with respect to the lo-
cation of the near-optimal points); and

The structure of the priming function cost surface
should be “easier” to search than the target evalua-
tion function.

In future work, we will test these conjectures by investi-
gating the behavior of incremental evolution using some
synthetic cost functions for which we can easily control
the above characteristics of the priming functions.

Currently, incremental evolution is applied by manu-
ally choosing the priming functions and the schedule (i.e.,
Go and to), and observing the results. Onc could auto-
mate this procedure by iteratively choosing values of Go
and to. Although this would bc a time-consuming pro-
cedure, it can bc worthwhile if higher-quality solutions
can be found using incremental evolution.2 Since wc now
have a qualitative theory (based on the priming function
cost surface structure) that predicts the success incre-
mental evolution, wc arc currently investigating meth-
ods for exploiting the theory to efficiently automate the
incremental evolution process to some extent. For exam-
ple, given a Go, it may bc possible to sparsely sample
its cost surface and estimate the degree to which the two
conditions described above are satisfied. These estimates
can then bc used to prioritize the order in which priming
functions are used for Go.

zNote that in Figure 2, incremental evolution is discovering bet-

ter solutioos than those found. by the conventional method, by the

time the algorithms apparently converge,

6 Acknowledgments

The research described in this paper was performed by
the Jet Propulsion Laboratory, California Institute of
Technology, under contract with the National Aeronau-
tics and Space Administration. Bob Glaser provided the
simulation software for the Mars microprobe model,

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

D. Andre. Evolot,ion of mapmaking: Learning, plan-
ning and n~cn)rm.y usiog grmetic programming. In Pr-oc.
IEEE Inkmationd Conf. on Evolutionary Compu,to,tion
(ICEC), pa~~S 250-255,1994.

H. Cobb and J. Grcfcnstcttc. Genetic algorithms for
tracking changing cmvironmcnts. In I%oc. Fifth Intcrna-
tionul Conjerc7~Mx on Gcmtic Algorithms, pages 523–530,
1993.

A. Fukunaga and A. Kahng. Improving the performance
of mm]ntionar.y optimization by dynamically scaling the
cvaloation function. In Pr-oc, IEEE 17Ltcr7/.o,tional Co71f.
on Evolu,tionmy Computation (ICEC), 1995.

D. Goklbcrg. Genetic Algorithms i7~.Sco,vclL, Optintiza.-
tion and Mo,chim Lcar7/.ing. Arldison-VVcslcy, 1989.

I. Harvey, P. Husbands, ancl D. Cliff. Issues in cvolution-
.ary robotics. In Fr-oIn Animals to Ani7nats ,2: Procccdi7tgs
of the Second International Co71fmmcc 071Simulation of
Adoptiuc Behavior, pages 364-374, 1992.

I. Harvey, P. Husbands, and D. Cliff. %wing the light:
Artificial cvolotion, real vision. In From A7/.in),ds to An-
imats g: Pr’occcdings of the Third Intcmatiomd Co7j,fcr-
cncc m. Adoptive Behavior, pages 392–401, 1994,

D. Hillis. (k-xolving parasites improve simulated evo-
lution. Physics D, 42:228-234, 1990.

D. Jeff’crson, R. Collins, C. Cooper, M. Dyer, hi. Flow-
ers, R. Korf, C. Taylor, and A. Wang. Evolution as a

theme in artificial life: The gcncsys/tracker syskm. In
C. LiLn~ton,C. Taylor, J. Farmer, and S. Rasmussen, ed-
itors, Artijiciod Life II, pages 549–577. Addison-VVcslcy,
1!)92.

J. Koza. Gmctic Pro.qro7n7ning: 071 the Progro,mmi71g
of Computers By the Means of No.tuml Scktion. MIT
Press, 1992,

M. Littnmn and D. Acklcy. Adaptation in constant util-
ity non-stationary cmvironmcnts, In Proc. Fourth lntcr-
71.diomd Co7~fcrc7m on Genetic Algorithms, pasts 136–
142, 1991.

C. Ramsey and J. (kfcnstcttc. Case-ba.cd initializa-
tion of genetic algorithms. In Proc. Fifth International
CoI~je7v71cc on Ge7r.ctic Algo~ithms, pages 84-91, 1993.

J. Rutkowska. Emergent functionality in human infants.
ht FroIn. Animak to A71i7nats3: Procccdi7~,gs of the Thivd
Inten~,atio7j.al Confmemx on Simulnttion of Adaptive Bc-
hvior, page. 179-188. MIT Press, 1994.

A. C. Schultz. Adapting the cwaluation space to improve
global karning. In Proc. Fourth Intcrnotional Confer-
mcc on Gc7~,ctic Algorithms, pages 158–164, 1991,

5

